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Overall Logistics trends
e Digitisation
e Data analytics
e Automation & Robotising & Autonomous Vehicles
e Environment & Electrification
e Urban logistics & last mile logistics

e Real-time decision making

All allow input from Operations Research and Analysis!
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Service Logistics

All logistics services after the sales

e Spare parts provision

e Repair, maintenance and overhaul

e Upgrades

e Information and community forming (Harley-Davidson)

Allows higher margins and more stable market than on new
products (e.g cars, planes, chip machines, computers,
military equipment, etc) (Aberdeen Group).

16-October-2018



Challenges service logistics

e Demand is dispersed over the globe
e Demand in small numbers and often very critical.

e Demand arranged by service contracts with various
response times (2h, 8h, next day,...)

e Hence logistics is important and has high margins
(express companies love it)..

e Similar challenges apply to military logistics,
especially on missions.
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Dutch Service Logistic Forum SLF

e Long standing research cooperation between
universities and companies on a variety of service
logistic aspects:

e Contract types (pay per part or pay per flying hour)
e Demand forecasting and predictive maintenance

e Obsolescence management | THALES diarel

ASML e
e Control tower development — bl
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Some research achievements

e Using Installed Base Information demand can be
better forecasted (see Dekker et al. 2015) and
inventories can be adapted beforehand!

e Part obsolescence can be predicted from supply
chain data (varying leadtimes, last order long ago,
low demand)

e Repair shop planning can be improved by dynamic
priority setting, inventory control of piece parts

e |Lateral transhipments and preventive emergency
shipments improve performance.
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Predictive maintenance /Condition
Monitoring (CM)

e Apply sensors to machines to measure state and
predict failures.

e Typical in aircraft, trucks, heavy machinery,
weaponry, etc.

e Gives warnings, reduces failure consequences and
extends maintenance intervals.

e Companies, like Shell, Gen Electric, ASML have set
global data analysis centres for CM info on major
installations.
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Predictive maintenance and stock control

e But what is the benefit for logistics? (right part at
right place at right time).

e Medium-term (month) predictability of many CM
techniques seems still low. Can we order the part in
time? Is leadtime shorter than CM warning time?

e Hence it may vyield little savings on logistics.
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New model: Dynamic stock control

Assume CM may give a signal at time t. This signal
indicates that in periods t+T1 a failure occurs with
probability p; for Tin [T,,, T,,]. If no failure occurs,
the signal was a false alarm.

Costs: for holding parts, (regular/express) ordering,
returning as well as for downtime for waiting for
part.

Policy: state and pipeline stock dependent policy for
ordering and returning items; leadtime L.

Analysis: transform cost function and use L#
convexity to prove monotonicity. Use value iteration
to evaluate policies.
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Dynamic stock control (ADI)

e Savings depend on precision p (probability that signal turns into
f(":lailure)éI sensitivity q (ratio of predicted demand vs overall parts
eman

e Big requirement: part leadtime L < T (warning interval), otherwise
savings drop substantially.

Benefit of ADI vs precision p and return cost ¢ Benefit of ADI vs sensitivity g and return cost ¢
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e See Topan et al. 2018 IISE. Idea applied by ASML.
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Intuition behind policy

e Low demand, high expensive parts: stock centrally
e High demand, low value parts: stock locally

e In between parts: stock in principle centrally, but in
case of failure signals move to downstream unless
transportation costs are high.

e Jssue: you need at least two parts centrally.

e Idea of dynamic stock control can also be used for
moving assets (ships, trucks, installed base

forecasting).
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Service control tower

e Combines information on the status
of all service processes in one IT
system, typically with a dashboard
and click-through system for detailed
system info.

e (Generates alerts for planners to take action

e (Preferably) advises planner on all kind of corrective
and preventive actions (lateral transhipment,
expediting, stock reallocation, emergency shipment)

e Service contracts have finite review periods!
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Example integrated dashboard

No interventions
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Practice and issues Control Towers

e Only two firms involved have a control tower, mainly
combining information; other companies want to have
one. Limited decision support so far available.

e Information should also be provided by other suppliers /
parties in a standard format

e Processes should be split-up in phases and completion
should be reported: e.q.
- part arrived
- initial inspection done
- all piece parts needed are available
- repair started

e Analytics should be performed on these data to allow
predictions
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Finite versus infinite horizon planning

e Tactical planning models typicallly oriented at
infinite horizon planning.

e Eg. (5-1,5S) or also called base stock policy with
base stock S (replenish upon each demand).

Assumption: demand is Poisson process with rate A
and leadtime L.

e Long-term Fill rate (= % of demand fulfilled from
stock) is given by:

P(IL>0) = P(D, <S) = Z(M)
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Finite versus infinite horizon

e Yet for a short period, the fill rate is a random
variable, which can be higher (100%) or lower (0%)

e Control tower gives information on current situation:

For a given starting situation: e.g S = 2,

demand rate = 0.5 /month;

penalty of stockout 10.000 euro

present inventory: 0, one item to come in 1 month,
the other in two months.

two months to go to end of period

should we advance the first replenishment with 2
weeks for 500 euro?
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Issues CT decision support

e How to limit the number of options? Extra info
needed may not be available.

e Exact calculations seem to be more difficult:
explosion of possibilities. Heuristics may work well,
but how far away are they from optimal?

A simple rule saved Turkish Airlines 2 min euro!

e Simulation is a much simpler technique and works
fast.

e A Control Tower may be an interesting option for
military (service) logistics. Definitely for the F35!
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Arrival time (ETA) prediction of ships

e The handling of an ocean ship in a port requires
many parties (pilots, port master, tugs, boatsmen,
terminal, surveyors and fuel barges)

e The planning and scheduling of these parties benefit
if they have more accurate information on arrival
and departure times of ships.

e Shipping companies do not always share that
information.
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AIS data

e Automatic tracking system used on ships and by
vessel traffic services (VTS)

e Exchange with other nearby ships, AIS base
stations, and satellites.

e Real-time data: unique identification, position,
course and speed.

e Required for ships with Gross Tonnage > 300 tonnes
and passenger ships
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http://www.marinetraffic.com/

Arrival (ETA) prediction

e Machine learning can be used to predict the ETA.
Exact model depends on additional user info
(shipping line or 3rd party)

e Predict ETA through: ETA = present moment +
remaining sailing time. Direct prediction of date
does not work!

e Machine learning works if there is a lot of replication
of events and data!
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ETA(D) ML method results

SVM - support vector machine
RF — random forest

BL — base line model parameters
Tuned - parameters optimised

Model MAE RMSE MAPE Kernel

'BL SVM 1.82  2.62 6.15%  Radial
BL RF 1.58  2.49 4.31%
Tuned SVM 1.62 2.70 4.27% Radial
Tuned RF 1.49 2.33 4.06%

Performance is better than captain’s (MAE 4 hr)

The estimate from the First Noon Report are
worse, than those at departure port (D).
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ETA - interpretation ML results

Variable Importance

Tuned Support Vector Machine, Radial kernel, (ETAD)
Cargo Type .
Season o
Port of Departure .
B/L Status 4
Contract Type 4
Capacity
Vessel Code o
B/L Speed °
Port of Destination .
Projected Speed .

Distance to Go o

0.0 50 7.5
Increase in MSE

o
in

Variable importance:

left Support Vector Machine,
right Random Forest.

Note the difference.
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ETA prediction ships

e A better forecast is nice, but only it should create
value by allowing a better berth planning.

e Machine learning does not work if humans change
the arrival time (e.g. Anchoring in case of waiting
for an oil price increase).

e |Legal rules regarding demurrage block an overall
optimal solution.

e Analytics approach can also be applied to other
transport chains and identify irregularities!

16-October-2018



Contents

e Intro to Service Logistics

e Predictive Maintenance
e Service Control Towers

e Ship ETA prediction

e Synchromodal transport

16-October-2018



Synchromodal transport

e Transport of containers in multiple modes with the
possibility to switch between modes in real-time.

e Example: use barge from Rotterdam to Duisburg if
it is on time, else switch to truck.

e Flattens fluctuations in transport demand and
mitigates delays.

16-October-2018



Extended gateways

e Terminals develop inland networks with terminals
and high transport frequencies

e Ocean part of container shipping gets cheaper
because of economies of scale, yet land part gets
more expensive because of increased road charges.
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Synchromodal planning

e Real-time planning with dynamic bottleneck
identification, adaptive dynamic programming

e A good network with routing flexibility at nodes
works well.

e This also allows a floating stock concept, where
goods are sent before demand is realised (Ochtman
et al 2009).

e Agent-based technology is proposed to route the
containers one by one.
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Conclusions

e Civil research on logistics also yields interesting
ideas for the military.

e Service logistics, predictive maintenance and control
towers seem particular attractive to military and the
F35!

e Synchromodal transport and ship eta prediction
improve transport chains.

e Al is very attractive and provides new applications,
but also has limitations
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